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Rate of Convergence Estimates for Nonselfadjoint 
Eigenvalue Approximations* 

By J. H. Bramble and J. E. Osborn 

Abstract. In this paper, a general approximation theory for the eigenvalues and cor- 
responding subspaces of generalized eigenfunctions of a certain class of compact operators is 
developed. This theory is then used to obtain rate of convergence estimates for the errors 
which arise when the eigenvalues of nonselfadjoint elliptic partial differential operators 
are approximated by Rayleigh-Ritz-Galerkin type methods using finite-dimensional spaces 
of trial functions, e.g. spline functions. The approximation methods include several in 
which the functions in the space of trial functions are not required to satisfy any boundary 
conditions. 

1. Introduction. In this paper, we develop a general approximation theory for 
the eigenvalues and corresponding subspaces of generalized eigenvectors for a certain 
class of compact operators. This theory is then applied to several examples. The 
principal examples consist of certain Rayleigh-Ritz-Galerkin type methods for the 
approximation of the eigenvalues of second-order nonselfadjoint elliptic differential 
operators. In each case we give estimates for the rate of convergence. By means 
of our general theorems on compact operators, the problem of estimating the rate 
of convergence of the eigenvalues is reduced to obtaining estimates for the rate of 
convergence in the approximate solution of the corresponding boundary value 
problem. We make strong use of not only 22 estimates but also estimates in Sobolev 
spaces of negative order. 

Although our theorems could be applied to higher-order elliptic equations, 
ordinary differential equations and integral operators, we have chosen to center 
our attention on the general second-order elliptic case and to obtain specific results 
for a variety of projection methods. 

There is an extensive literature dealing with the approximation of eigenvalues 
of selfadjoint operators. For the case of a selfadjoint operator which is bounded 
below, upper bounds for the eigenvalues are provided by the Rayleigh-Ritz method. 
The method of intermediate problems introduced by Weinstein [47], [48] provides 
lower bounds. This method was extended by Weinstein [49], [50], [51], [52], Aronszajn 
and Weinstein [3], Aronszajn [1], [2], Weinberger [45], [46], Bazley [7], Bazley and 
Fox [8], [9], and Stenger [41]. Another method has been developed by Fichera [21], 
[22] for finding lower bounds for eigenvalues connected with selfadjoint boundary 
value problems for elliptic differential operators in a bounded domain. 

Also, in the selfadjoint case, Birkhoff, de Boor, Swartz, and Wendroff [11] prove 
an inequality from which lower bounds can be derived for the eigenvalues in terms 
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of the Rayleigh-Ritz eigenvalues corresponding to a given finite-dimensional sub- 
space and the approximability properties of the subspace. A specific application 
of this was carried out for second-order ordinary differential operators using sub- 
spaces of cubic splines. This idea has been generalized so as to apply to selfadjoint 
elliptic operators and rather general finite-dimensional subspaces; cf. Ciarlet, Schultz, 
and Varga [19], Schultz [39], [40]. Pierce and Varga [33], [34] give 2, eigenvector 
estimates which are optimal in the sense of corresponding to the approximability 
properties of the underlying subspaces. 

Perhaps the work closest to that of this paper is the work of Valnikko [42], [43], 
[44]. In [44], he proves a general theorem on convergence of eigenvalues and gen- 
eralized eigenvectors. Our Theorems 3 and 4 of Section 3 are analogous to his. He 
does not obtain results of the type given in Theorems 1 and 2 of Section 3 (our main 
theorems) and it is not clear how to put several of our applications into his setting. 
His strongest results rest on the fact that an operator T is approximated by an operator 
PhT where Ph is a certain projection whose adjoint can be calculated. This task, 
which must be carried out with each application, does not appear to be simple. 
Our approach, while avoiding this difficulty, yields stronger results. 

Recently, Osborn [30], [31], [32] has derived error estimates for Galerkin ap- 
proximations of the eigenvalues of nonselfadjoint ordinary differential operators 
which are lower order perturbations of selfadjoint operators. The eigenfunctions 
of the related selfadjoint operator are used as trial functions and the error estimates 
depend in a simple way on the data of the problem. 

We mention finally that Marek [27] gives error estimates for the approximation 
of the Perron root of a class of nonselfadjoint operators which are of positive type 
provided the approximate operator is also of positive type. 

Error estimates for the approximate calculation of eigenvalues of selfadjoint 
operators have always depended on a variational characterization of the eigenvalues. 
In the present work, no use is made of such variational principles; instead, we use 
certain estimates for the related resolvent operator. Special features of this work are: 

1. Approximations for the generalized eigenfunctions are obtained first and then 
used to obtain the eigenvalue estimates. 

2. In the case of a multiple eigenvalue (in general having different algebraic 
and geometric multiplicities), a weighted average of approximate eigenvalues is 
shown to be the "right" choice as an approximation. 

3. The results apply to general nonselfadjoint elliptic operators. 
4. Various methods for defining the approximate eigenvalues are treated, in- 

cluding methods in which the functions in the subspaces of trial functions are not 
required to satisfy any boundary conditions. 

5. The estimates are optimal in the sense that they give the best estimate that 
could be expected on the basis of the approximability properties of the underlying 
subspaces. 

An outline of the paper is as follows: In Sections 2 and 3, we derive results on 
the approximation of eigenvalues and generalized eigenfunctions of a class of compact 
operators. Section 4 deals with the general class of differential eigenvalue problems 
to be considered in the paper. In Section 5 we discuss the families of finite-dimen- 
sional subspaces used in constructing the approximations. Sections 6-11 contain 
various smethods for constructing the approximate eigenvalues: The ordinary Galerkin 
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method, the least squares method of Bramble and Schatz [15], [16], methods of 
Nitsche [28], [29], and a recent method of Babuska [6]. In each case the eigenvalue 
results are shown to follow easily from results on the approximation of the solution 
of the corresponding inhomogeneous problem. 

2. General Notation. Let 2 be a bounded domain in Euclidean N-dimensional 
space RN with boundary a2 which we will assume (for convenience) to be of class 
Co. Let C'(n) be the class of infinitely differentiable complex valued functions 
defined on Q, the closure of 2. For functions in C(n), we define the 22-inner product 
by 

(9, st') = fijdx 

and the corresponding norm by 

Ir ) ~~1/2 I 19I 1 = (JI Of 12 dx 

Let a = (ao, aN, c) be a multi-index (i.e., each a,, i = 1, , N, is a non- 
negative integer), 

D=a l'I/aXl 1 . .. a 
"I 

N1,0X INN 

and Hal = =1 a. We define for p E C'(n) and for j a nonnegative integer the 
norm 

1/2 

la( I -<i 

The completion of C'(n) with respect to I III will be denoted by Hi(Q). This is the 
Sobolev space of order j and is a Hilbert space. For any positive real number s, 
we define HS(2) by interpolation between successive integers following Definition 
2.1 of [26]. The spaces HS(2) for s < 0 are defined as follows: 

For p EE C() and s < 0, set 

(2.1) II9IIS = sup 1(, 0)/Ikl {l ls 
4EC O(Q) 

Then Hs(2), for s < 0, is defined as the completion of C'(n) with respect to the 
norm 11 II, (cf. [10]). Now HS(2) is a Hilbert space for any real s. Note that H0(2) = 
22(Q) and that HS 2(j) C HS (i) if s1 ? S2. We state the following well-known result. 

LEMMA 2.1 (RELLICH). Let s, and S2 be real numbers with s1 < S2, and let IS ,2 

be the injection operator mapping HS 2() into HS (2). Then IS S 2 is compact. 
For any A: HS(2) > Hs(2), we define, for s, < s _ S2, 

IIAIISIS2 = sup IIApl /IAlgl 2ls 
( H%2 (Q) 

Note that, for each given sl, S2 and s, there is a constant C such that 

(2.2) $IAIIS1 S2 _ C IIAIISK. 
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The restriction of A to a subset X of HS(2) will be denoted by AIx. Let o(A) denote 
the spectrum of A and p(A) the resolvent set. For any complex number z E p(A), 
the resolvent operator R,(A) is defined by 

R2(A) = (z- A)- 

If A is compact, then o(A) consists of a denumerable set of nonzero complex numbers 
and zero. Each nonzero point /i of o(A) is an eigenvalue of A; i.e., there exists a 
nonzero element u of HS(2) such that Au = Flu. Zero may or may not be an eigen- 
value. 

Let /i be a nonzero eigenvalue of A. The least integer a such that Y((A- = 

X((A - a +1), where a denotes the null space, is called the ascent of A - , If 
A is compact a is finite. The integer m = dim Y((A - /)) is called the algebraic 
multiplicity of /i and is likewise finite. The subspace Y((A - ,/)') is called the space 
of generalized eigenfunctions corresponding to the eigenvalue ,u. The geometric 
multiplicity is equal to dim Y(A - /i) and is always less than or equal to m. In the 
case of a selfadjoint operator, the geometric and algebraic multiplicities of a given 
eigenvalue ,u are equal. 

We next state a general result on the approximation of eigenvalues of compact 
operators. 

Let K: 22(i) -' 22(2) be compact. Suppose that tKho<h<, is a family of compact 
operators K,, 22(2) -> 22(2) such that 

lim ||K - Khllo o = 0- 
hO 

Let Al, pu2, be the nonzero eigenvalues of K ordered by decreasing magnitude 
taking account of algebraic multiplicities. Then for each h > 0 there is an ordering 
of the eigenvalues of K,,, AO1(h), 112(h), , such that, for each integer j, liml,,,0 Ii(h) = 

At (cf. [20]). 
For the purpose of this paper, we shall restate this convergence property in the 

following convenient form. 
LEMMA 2.2. Let ,u be a nonzero eigenvalue of K with algebraic multiplicity m 

and let F be a circle centered at ,u which lies in p(K) and contains no other points of 
c(K). Then, there is an ho such that, for 0 < h < ho, there are exactly m eigenvalues 
(counting algebraic multiplicities) of Kh lying inside F and allpoints of cr(K,,) are bounded 
away from r. 

The next lemma relates the projection onto the generalized null space corre- 
sponding to ,u to the projection associated with the part of the spectrum of Kh inside 
F (cf. [25]). 

LEMMA 2.3. With F and ho as in Lemma 2.2, if 0 < h _ ho, the operators 

E() = I-. R(K) dz and Eh(,u) = I 
f R,(Kh) dz 

are projections (in general nonorthogonal). The range of E(,u), R(E(,u)), is the space of 
generalized eigenfunctions of K corresponding to ,u and R(Eh(11)) is the direct sum of 
the spaces of generalized eigenfunctions of K,, associated with the eigenvalues of Kh 

inside of F. Finally, 
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i rn IE(,) - El,u)1,, = 0 

and dim R(E,,(,1)) = dim R(E(,4)) = m. 

3. Convergence Estimates. In this section we will consider a particular type 
of compact operator T and a family of compact operators T,}o<,<l which approxi- 
mates it. The first theorem relates a certain invariant subspace of T, to generalized 
eigenfunctions of T. These estimates are then used to deduce estimates for the rate 
of convergence of the eigenvalues of T, to the eigenvalues of T. 

More precisely let s5 be a fixed nonnegative real number. Let T be an operator 
from HS(Q) to HS(Q). We suppose further that for some fixed e > 0 and all 
s _ -sO, 

(3 .1l) T: H'(Q) >- Hs +e(Q) 

as a bounded mapping. 
From (3.1) we see that T can be considered as an operator from HS(Q) to HS(Q) 

for s ? -so and, from Lemma 2.1 we see that T will be compact as an operator on 
Hs(Q). In the sequel the space Hs(Q) on which we are considering T will be clear 
from the context. 

LEMMA 3.1. For s _ -so, the spectrum of T on HS(Q) is the same as the spectrum 
of T on 22(Q). 

Proof. Clearly, the spectrum of T on HS?(Q) contains the spectrum of T on 
Hs(Q). Suppose ,u # 0 is in the spectrum of T on Hs(Q). Then, there is a nonzero 
u E HS(Q) such that Tu = ,uu. By virtue of (3.1), u EE Ht(Q) for all t ? -se. Hence, 
u E H'(Q) and it follows that , is in the spectrum of T on Hs(Q). 

Note that the space of generalized eigenfunctions corresponding to a nonzero 
eigenvalue is also independent of s. This follows easily from (3.1). 

Now let {T,,} ,<,, be a one-parameter family of compact operators from L2(r) to 
L2(r) such that 

(3.2) lim |T - Tll0, = 0. 

Let ,u be a nonzero eigenvalue of T with algebraic multiplicity m. Let F be a 
circle centered at , which lies in p(T) and contains no other points of U(T). From 
Lemma 2.2 applied to T and ' Tl } 0,<, <, we see that there is an h( such that, for 0 < h 
< h( there are exactly m eigenvalues (counting algebraic multiplicities) of T, inside 
of F. Throughout this section, ,, F, and h( will be considered fixed and the m eigen- 
values of T, which lie inside F are denoted by ,u(h), .., , 4,jh). 

Now, from Lemma 2.3, with K = TK 2(Q), K,, = T,, and h ? h(, the operators 

E(4) = f Rz(T>,,(Q.) dz and E,(i) = - f R,(T,,) dz 

are projections onto the space of generalized eigenfunctions of T corresponding to ,u 
and the direct sum of the spaces of generalized eigenfunctions of Tl, corresponding 
to ,ii(h), , ,u m(h), respectively, and dim R(E,,(,4)) = dim R(E(,u)) = m. 

The following lemma is central to our development. 
LEMMA 3.2. Let s, be a given nonnegative real number. Then there are constants 

C and h, such that for any u E Hs (Q), 0 < h ? h, and 0 ? s < so, 



530 J. H. BRAMBLE AND J. E. OSBORN 

(3.3) IIE(A)u - Eh(A)uII-s 

? C JIT - ThII-I- + |IT - ThIu-so IT - ThlIo,"S }I Iu 

Proof. By (2.1), for 0 < s < so, 

IIE(u)u - Eh(u)uII, = sup I([E(t) - Eh(A)]u, #)I/II9lIs 
(3 .4) c X 

1 - sup jA ([Rj(T) - R,(Th)]u, 0) 
-- sup ~-d 
27r vCc(Q) Ir jPI Is 

Now let z E F be arbitrary. We have for any sp & Hs(2), 

(3.5) I([Rj(T) - RZ(Th)]u, s)I/ I l~l I ||[RZ(T) - RZ(Th)IulII -s 

Consider now 

(3.6) [Rj(T) - RZ(Th)]u = Rj(T)(T- Th)R,(T)u 

- R,(T)(T - Th)RZ(Th)(T - Th)RZ(T)u. 

It follows easily from (3.6) that 

II[R,(T) - RZ(Th)]u11l- 

(3.7) < IIR.(T)1|-s,-s |IT - Th II-s,s8, IIR(T)1II,8,, Ijull., 

+ IIR.(T)1|-s,-s |IT - Th II-so IIR|Z(Th)l Ioo 

*IT - Th loSs IlRz(T)llIs, Ilull. 

Now by Lemma 3.1, z is in the resolvent set of T on Ht(Q) for -so < t. Since the 
resolvent of T on Ht(Q) is continuous as a function of z and F is compact, we have 
for some constant C that 

(3.8) IIRz(T)Iltt < C 

for all z E F and -so < t < s, 
Furthermore, 

Rz(Th) = (I + R (T)(T - Th))Y'RZ(T) 

provided IIR,(T)(T - Th)Io,o < 1. By (3.3) and (3.8), h1 may be chosen so that this 
condition is fulfilled uniformly for 0 < h < h1 and z E r. Thus there is a constant 
C such that for 0 < h < h1 and all z E F, 

(3.9) H Rz(Th)llo,o < C. 

Using (3.9), (3.8), and (3.7), we have 

(3.10) 1 1[R(T) - RZ(Th)]u1 IIs 

< C{IIT - ThIIS,S, + IT - ThIIS_,O |T - ThIjos_} II UIIs 

Inequality (3.4) now follows from (3.10), (3.5) and (3.4). 
The next lemma is an easy consequence of Lemma 3.2. In what follows, the term 

orthonormal will always refer to ?2(Q) 
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LEMMA 3.3. Let { u } 7l be an orthonormal basis for R(E(,A)) and s ?> 0. There 
exist constants C1 and h2 and a basis { wi } i for R(Eh(A)) such that for 0 < s < so 
and O < h < h, 

(3.11) max Ilui - wivllH < C1{IIT - ThII_,S, + -IT - Ths,0 IIjT - Th Io1,j. 
1:< i - m 

Proof. Since ui E R(E(,A)) and E(,A) is a projection, we have that u = E(ji)u j. 
Since ui E H"(Q) we may apply Lemma 3.2 with u = u;, j = 1, ... , m. Hence, 
choosing C1 = C max i Iu WI I I. with C the constant from Lemma 3.2, (3.11) follows 
with v i = Eh(A)u j. Now by (2.2), 

IT - 
Thl 1_s3-3 

jT- Th F C'|jT- Th|I0,0 

JIT - Th II , SJ 

and hence, because of (3.2) there is a constant h2 such that for 0 < h < h2q 

m 

E ll~j-wj11 < 1 

But from this it follows that the wv i's are linearly independent and hence a basis for 
the m-dimensional space R(Eh(A)). 

The first of our principal aims of this section is to obtain an estimate like (3.11) 
but for an orthonormal basis for R(Eh(A)). To this end we prove the following 
general lemma. Because of our application we phrase this lemma in 22(Q) even 
though it is true with 22(Q) replaced by any inner product space. 

LEMMA 3.4. Let m be a positive integer. There is a constant Cm such that, for 
f... , fm any linearly independent set in 22(Q) and gl, ... , gm the corresponding 
Gram-Schmidt orthonormalization, we have 

(3.12) max 11fk - gkIIo < Cm max I(fi, fk)- - ikI5 
1 <k:5m 1<j,k<m 

where 8 k is the Kronecker delta. 
Proof. We proceed by induction on m. Let M = maxi< k<m 1(fi, fk)- a ki. 

Observe that 

(3.13) IIIfmIIo - i1 | IIIfmII< - 1i1 < M. 

In particular, for m = 1, we have l f, - gj1lo = [ 11f1 - 11 ? M. Now assume 
the result holds for m - 1 with m > 2 and a constant Cm-,. Set 

m-1 
(3.14) gm = fm 

- (fmi, g0gi 
1=1 

andl coimsider first- dyt Gaugl M-< ?in. Sivce 

I(fmi MDI < IIfmIIo |i - fillo + I(fmi fi) 
it follows from the induction hypothesis and (3.13) that 

I(fm5 g,)I < (2Cmi1 + 1)M 

for j < m and hence, from (3.14), 
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(3.15) IIfm - gm1o < (m - 1)1"2(2Cmi + 1)M. 

Now, since gm = gmj I I gm 1o1, 

Igm - Iigmllo - 1| 

(3.16) < II2ml 10 - llfmllol + lllfmllO - 1| 

< I lk fr.l10 + IIlIfmll1 - 1 

< [(M - 1)1/2(2Cw,1 ? 1) ? 1]M. 

For M < 1 the result follows from (3.15), (3.16) and the triangle inequality. If 
M > 1 we have 

llfm - gmljlo < llfmllo + 1 < 2 + M < 3M 

and hence the lemma is proved. 
We shall also need: 
LEMMA 3.5. Let s > 0 be given and let {U m}1 be an orthonormal set in 22(Q) 

such that u i E Hs(Q) for each j. There exists a constant C such that if { wV i I} 1 is any 
linearly independent set and { wm } 1 is its Gram-Schmidt orthonormalization then 

max lWk - WkllO < C max (jjuj - ijjj-s ? juj - i0). 
1:5ksm 1<jim 

Proof. We have, from Lemma 3.4, a constant C depending only on m such that 

(3.17) max IIWk - WkIIO < C max R(OT, j) - 5il. 
1<k<m 1_i,jim 

Now, for fixed i and j, 

|(fv s W17) tj I (oi, 17vi) (UI s Uj)| 

(3.18) = I(1iT - uT, ij - u1) + (uT, 1', - ui) + (0ii - ui, u)jI 

< |U, 
- 0'2II H|Ui 

- 1i 0O lo + | UT||s IHui 
- 

10I1-s 

+ Iluills I1u, -wol s. 

The result follows easily from (3.17) and (3.18). 
We now state and prove the first principal result of this section. 
THEOREM 1. Let { u } 1 be an orthonormal basis for R(E(,u)) and s5 > 0. There 

exist constants C and h2 and an orthonormal basis { w } I=> for R(E,(,u)) such that, for 
0 < s < so and O < h < h29 

19 max llUk - WkIl|s 
(3.*9) l<k'm 

? C{j|T - Thll-ssl + |jT - Thll-so j|T- ThIo,s, + jIT - Th2I0,Sl} 

Proof. Let {I }f 1 be the basis for R(Eh(/I)) given by Lemma 3.3 and {wm}1 
its Gram-Schmidt orthonormalization. Then 

|lUk - WkI|-s <- jlIU 
- 

Wk1|I|-s + IIfk - Wk|IO- 

Applying Lemma 3.5 we obtain, for an appropriate constant C, 

(3 .20) l 1 Wk - Wkl lo < C max (I lu; - iw1 ? I+ui - Wj-). 
1? < _sM 
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The theorem now follows by using the estimate (3.11) on the right-hand side of 
(3.20). 

We may also start with an orthonormal basis in R(Eh(I)) and obtain a close 
orthonormal basis for R(E(A)). This we see in the following: 

COROLLARY 1. For each h with 0 < h < h2 let I w i} Im7, be an orthonormal basis 
for R(Eh(Iu)). Then there is an orthonormal basis I u } Im,= for R(E(A)) such that 

max jju, - will , 
1? jam 

< C{IIT - ThIjS,S, + -IT - ThIlI,,o jT - ThIjo_,S + - Thjj ,.q,} 

holds for all 0 < s < so, where C is a constant independent of h. 
Proof. Let {I' } 'lm be an orthonormal basis for R(E(A)) and let Iw' } 7m be the 

corresponding orthonormal basis in R(Eh(A)) given by Theorem 1. Now w = 

Zm=~ 1 (w i, wl)wl. Set u > = EM 1 (w i, wl)ul. The result follows by applying the estimate 
of Theorem 1 to each term on the right-hand side of the expression u - w = 

Ek=1 (wi, WO)(uN - Wk). 

Theorem 1 and Corollary 1 show that the "gap" between R(Eh(I)) and R(E(A)) 
is estimated by the right-hand side of (3.19) (cf. [25]). 

We want next to study the eigenvalues of Th which are inside F and their re- 
lationship to A. As before, let ,Aj(h), . , Am(h) denote the eigenvalues of Th which 
lie inside F. In case they are not all distinct, they are counted according to their 
algebraic multiplicities. Now, it is well known that the individual ,j(h)'s may be 
rather poor approximations to A because of the nonselfadjointness of T although 
by Lemma 2.2 they converge to A as h -> 0. However, their arithmetic mean is a 

much better approximation to A (cf. [25]). We therefore define 

I 
_ 

op(h) 

=- E 81(h). 

The next lemma gives representations for Au and ,-(h) in terms of T, Th and elements 
of the subspaces R(E(A)) and R(Eh(A)). 

LEMMA 3.6. Let { u } 1 be any orthonormal basis for R(E(A)) and w i} Im be 
any orthonormal basis for R(Eh(/I)) with 0 < h < ho. Then 

(3.21) 1 
I 

(Tui, u;) m 7=1 

and 

(3.22) '(h) =h- 
1 wj). 

Proof. Denote by T the restriction of T to R(E(,A)) and by Th the restriction of 
Th to R(Eh(/I)). We first observe, since R(E(A)) is an invariant subspace for T, that 
o(T) = { I} and that A is an eigenvalue of T with algebraic multiplicity m. Similarly, 
for 0 < h < h, o(Th) = {I L(h), ... , Am(h)}. Since on the one hand trace T = mA 
and on the other hand trace T is equal to the sum of the diagonal elements of any 
one of its matrix representations, (3.21) follows. In the same way we obtain (3.22). 

We are now in a position to state and prove the second main result of this section. 
THEOREM 2. Let s, be a given nonnegative real number. Then there exist constants 

C and h2 such that, for 0 < h < h2, 
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(3.23) At- 

< C I|T - ThIISO + || IT - Thlso0 IT - ThIIO,s, + I T- Th1 2,Sj- 

Proof. Let {Iu} u i be any orthonormal basis for R(E(,u)) and let {Iw} w be the 
corresponding orthonormal basis for R(Eh(/I)) given by Theorem 1. Then, by Lemma 
3.6, we have 

l m 
(3.24) Au- ,(h) = - [(Tui, uj) - (Thw1, wi)]. 

We will obtain the estimate (3.23) by re-expressing the right-hand side of (3.24); 
For ease of notation let j be fixed with 1 < j < m and set u, = u and w = w. 

Then 

(Tu, u) - (Thw, w) = (T(u - w), u)- ((T - Th)(u - w), u) 

(3.25) + (Tu, u - w)- ((T - Th)u, u - w) 

+ ((T - Th)u, u) - (Th(u - w), u - w). 

We estimate the terms on the right-hand side of (3.25) as follows: 

(T(u- w), u)| < IIT|-0s.-s. HU - wjl-s. Hulls., 

((T- Th)(u- w), u)I < j|T- ThlI-SIo llu- wI oIIuISO, 

(Tu, u- w)l < I HTIISO 18 H 0,80- WL -SO, 

((T- Th)u, u- w)| < ?jT- Th110,S, IIuIjs, IHu- wllo, 

I((T- Th)u, u) < ? jT - ThI I |-so |I IUH 8sl I IUI Iso, 

I(Th(u - w), u - w)< ? IIThI Ioo I lu - wI 12 

Since IT - Thlloo 0 as h -0 IIThl Io,o is bounded uniformly in h for 0 < h < h2. 
Now each expression on the right-hand side of each of the six inequalities is bounded 
by a constant times the right-hand side of (3.19) with s = so. Hence, using these 
estimates with (3.25) and (3.24), the proof of Theorem 2 is complete. 

We may also estimate ,u - k(h) for each k. 
THEOREM 3. Let a be the ascent of ,u- T. Then there are constants C and h2 

such that,for 0 < h < h2 ands, > 0 

max I - /Ik(h)I1 

< C{IIT - Thjuso0s, + |IT - ThII8sOo IT - 
Thjlows, + JIT - Th1 1,S2}. 

Proof. Let w be a unit eigenfunction corresponding to Ak(h). By Corollary 1 
there is a unit vector u E R(E(,u)) with lu - wlIt- estimated by the right-hand side 
of (3.19). Now, noting that (, -T)au = 0, we have 

1,- k(h)1 = I([( - k(h))' - (4 - T)a]u, u)I 
ax-i 

= Z ( - Ak(h)) ((A - T) a (k(h) - T)u, u) 
1=0 

Since R(E(jt)) consists of generalized eigenfunctions, lull, will be bounded in h for 
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any fixed s even though u may depend on h. Using this and the fact that T is bounded 
in H-sO(Q) we obtain 

A- Ak(h)l -< C II(Ak(h) - T)uJso 

Adding and subtracting w and observing that (/k(h) -Th)w = 0 gives 

Ii - /k(h)l 

_ C{JI(juk(h) - T)(u - w)I I-so + I(T - Th)(u- w)I Iso + II(T - Th)ull so} 

from which we obtain 

IA- k(h)l ? C{JJu - wl8-so + IT - Th IIsoO IJu - wlHo + IT - Thll|-so}. 

The result follows immediately from Corollary 1. 
Finally in this section we obtain quite easily results concerning the proximity 

of certain elements of R(Eh(IL)) to certain elements of R(E(,A)). For example, for 
small h an eigenvector in R(Eh(Iu)) will be close to an eigenvector in R(E(A)). The 
full result is given in the following: 

THEOREM 4. Let ,(h) be an eigenvalue of Th such that ,(h) -> A as h -> 0 and 
s1 > 0. Suppose, for each h, w is a unit vector satisfying (,4(h) - Th)kw = 0 for some 
positive integer k < a. Then, for any integer I with k < I a a, there is a vector u C 
R(E(4)) such that (u - T)tu = 0 and 

H|u - w|lo _ C lIT - ThIll1-k1)/a. 

Proof. From the Riesz-Schauder theory and the closed graph theorem it follows 
that (A - Tf 2 J())' has a bounded right inverse which maps R((, - Tf 2 J())') to the 
orthogonal complement of X(A - T)' in 22(Q). Thus, setting u = Pw where P is 
the orthogonal projection of 22(Q) onto 91((A - T)t), there is a constant C inde- 
pendent of w such that 

(3.26) 11w - uJI0 ? C Il(, - T)'(w - u)IlI. 

By Corollary 1 there is a unit vector ri in R(E(,A)) such that 

11w - illo < C lIT - Thllo,S,. 

Hence 

I[(4 - T)' - (- Th)t]wIwO 

1-i 

(3.27) = Z (4 - Th)Y(Th - T)(4 - T)t'-i[(w - [i) + il] 
(3.27) ~~~~~i=o 

< CQlw - r4110 + IlTh - TIIO,,l) < C I|Th - TIIo,,s. 

Since k < 1, 

II(R- Th)twllO = ZI0 (4)(.- (h))(1(h)- Th)t iw 

(3.28) - || E' (l)(( - j(h)) (M(h) - Th)J -w 

?Cl-k- - 
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Using (3.26), (3.27), and (3.28), we have 

jjw - uj|(j < C I|[(u - T), - (u - T,,)']w + (u - To,)'wj( 

< Ct |j - ju(h)Il k + I 
jTI, - TI0,S,} . 

The result now follows from Theorem 3. 

4. Second-Order Boundary Value Problems. Let L be a second-order op- 
erator given by 

N~~~~~~ 
(a] ) Eb + o 

where a, i, b, and c are in C-(n) and a, = a ,. We will assume that L is uniformly 
strongly elliptic; i.e., there is a positive constant a, such that 

Re E a,(x)t, ? ao 
7, 1=1 ? =1 

for all real 0, , t and all x E Q. The sesquilinear form on H'(Q) X H'(Q) 
associated with L is given by 

N ~~~~N - js 
B(<, A) = IA llI-7dx? +Zj, be --A' > dxb A dx. 

?,,1Q ax, ax, t Q ax, 

Let b = max,,N, N; CQ Ib(x) . 
We shall assume without loss that Re c ? a,/'2 + b2/2a0 since adding a constant 

to c only shifts the eigenvalues. Under this assumption B is coercive on H'(Q); i.e., 

(4.1) Re B(o, <) _ 1ao IkpII1 

for all o EE H'(Q). Clearly, because of the boundedness of the coefficients, we also 
have that B is continuous on H'(Q) X H'(Q); i.e., for a suitable constant al, 

(4.2) IBft , A)| _ a, jj|sjji11 11, 

for all so, f El H(Q). 
Let H,(Q) be the closure in H'(Q) of the infinitely differentiable functions with 

compact support in Q, C,(Q), and V any closed subspace of H'(Q) with H,(Q) C 
V C H1(02). A class of boundary value problems associated with B may be formulated 
as follows: Given f E 22(Q) find u E V such that for all o E] V, 

(4.3) B(u, o) = (f, o). 

With our assumption on B this problem always has a unique solution u (cf. [26]) 
and we denote the linear operator which takes f to u by T. In the case V = H,(Q) 
this is just the weak formulation of the Dirichlet problem and for V = H'(Q), T is 
the solution operator for the Neumann problem. We suppose now that V is either 

Ho(Q) or H'(Q). 
If, in addition, we have f E H8(Q) for s real, the following estimate is valid: 

(4.4) 11Tf1 s+2 < Cs fll.Is 

where C, is an appropriate constant (cf. [35], [36]). The estimate (4.4) allows us to 
extend the operator T from 22(Q) to H8(Q) for any s < 0. Now let s() 0 be fixed 
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and consider the operator T as being defined on H?(Q). Then (4.4) shows that 

T: H8(Q) -> H+2(Q) 

as a bounded operator for -s0 < s. Hence T as defined here satisfies the conditions 
set forth in Section 3. 

An eigenvalue corresponding to the boundary value problem is a complex number 
X such that 

(4.5) B(u, ao) =: X(u, ao) 

for some nonzero u E V and all o EE V. An eigenvalue of T is a complex number ,u 
such that Tu = jiu for some nonzero u E HS(Q). As was pointed out above, the 
spectrum of T consists of nonzero eigenvalues and zero. Clearly, for any eigenvalue 
,4 of T we have that X = 1/,j is an eigenvalue satisfying (4.5). Similarly, for X an 
eigenvalue of (4.5), 4 = 1/X is an eigenvalue of T. It is also well known, because of 
the smoothness assumptions on the coefficients, that Lu = Xu in Q and, depending 
on the choice of V, u will satisfy certain boundary contitions. For V = Ho(Q) we 
have 

u = O on aQ 

and for V = H'(Q), 

au3/'a= 0 onaQ, 

where a3,/0Ev = 1 a, in ni bax, and n i is the jth component of the outward unit 
normal on AQ. 

Finally, we shall need in our applications some information about the 22(Q)- 

adjoint T* of Tl,,2 (,). This operator is defined by 

(Tf, A) = (f, T*nA) 

for all f, tE e22(Q) and satisfies T* f E V and B(o, T* ) = (o, 0) for all o E V. 
In addition we have as for T, the regularity estimate for s ? 0 and f E H8(Q), 

(4.6) IIT*tjIIs+2 _ Cs* Ih/'Is 

with C* an appropriate constant. We shall not need (4.6) with s < 0 even though 
it is valid. 

5. Finite-Dimensional Subspaces of Hk(Q). Let 1Sh}o<h<1 be a one-parameter 
family of finite-dimensional vector spaces. For given integers k and r with 0 < k < r 
we shall say that {S,}o<,,< is of class Q k,r if Sh C Hk( Q) for each h and if there is a 
constant C independent of h such that for any v E Ht(Q) with k < t < r, 

k 

(5.1) inf E hi 1lv - Xli < Ch' jviit. 
x CSh I =0 

Analogously, we define the class Sk.,r to consist of those families 
{Sh}O<h-1 

such 
that for each h, S,, C Hk(Q), and (5.1) is required to hold only for v E Ht(Q) n H(M). 

In the definition of 8k, r, condition (5.1) can be replaced by the condition that 
the same inequality be required to hold for t = r only. This was proved in [12]. 
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We note that there are many examples of families of class 8k,,r In particular 
the restriction to Q of many different families of piecewise polynomial functions 
are of class 8Ac,,r for certain values of k and r (cf. [17], [23], [24], [39], [54], [55]). Each 
of the usual sets of trial functions used in conjunction with the finite element method 
(cf. [53]) is of class 8k,r for some k and r. The simplest example of these for N = 2 
is the family of restrictions to Q of piecewise linear functions on a family of uniform 
triangulations of the plane with h the diameter of each triangle. Such a family is 
of class 81,2 and hence satisfies (5.1) with k = 1 and r = 2. 

Finally, by using tensor products of B-splines [37] it is easy to see that for any 
number of dimensions and any given values of k and r, families of class 8k,r may be 
constructed. For such considerations, cf. [4], [5], [13], [14], [23]. 

6. Standard Galerkin Methods for the Dirichlet and Neumann Problems. 
For V = H'(Q) let {Sh}O<h~l be a family of spaces of class 81,r For V = Ho(Q) 
let {Sh}O<h<l belong to 8,r and, in addition, assume that for each h, Sh C Ho(Q). 
We note that such families may be difficult to construct in practice for domains 
of general shape. Hence we will treat Dirichlet's problem again in the later sections 
by alternative techniques which do not require that Si, C H(Q). 

We want to consider the eigenvalues of the Galerkin problem; i.e., the complex 
numbers X(h) satisfying B(w, a) = X(h)(w, (p) for some nonzero w E Sh and all 
p E Sh. These we want to consider as approximations to the eigenvalues of (4.5). 

To this end we define now a family of operators { ThI}0< h on 22(Q) as follows: 
For each h set Thf = Uh, where Uh is the unique solution in S,, of the equation 

(6.1) B(uh, (p) = (f, a) 

for all p E Sh. The inequality (4.1) guarantees the existence and uniqueness of Uh. 

Hence, for each h, 

Th: 22(Q) -> Sh C ?22(Q) 

and, since Sh is finite-dimensional, Th is compact. 
Let y(h) be a nonzero eigenvalue of Th. Then there is a nonzero element w of Sh 

such that Thw = A(h)w. By the definition of Th, 

B(w, up) = i B(Thw, p) (w, ) 
y~h) y~) 

so that X(h) = l/p(h) is an eigenvalue of the Galerkin problem. Conversely, since 
none of the eigenvalues X(h) can be zero, each y(h) = I/X(h) is an eigenvalue of Th. 

Hence we may compare the eigenvalues of (4.5) with the Galerkin approximations 
by comparing the eigenvalues of T with those of Th. 

In order to apply our theorems we shall obtain estimates for T - Th. Let f E 

22(Q) be arbitrary. Combining (4.3) and (6.1) we have that 

(6.2) B((T - Th)f, p) = 0 

for all p E Sh. Hence, using (4.1) and (6.2), it follows that 

II(T - T,&)fII2 < 2/ao IB((T- Th)f, (T- Th)f)I 

= 2/ao IB((T- Th)f, Tf -x)I 
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for any x E Sh. Using the continuity of B, (4.2), it follows that for a suitable 
constant C, 

ll(T - Th)f I I ? C inf IITf - xlII 
XCSh 

Now suppose that f E Ht-2(Q) for some t with 2 < t < r. Then by (5.1) we have that 

(6.3) ll(T - Th)flll < Cht'1 llTfllt. 

But for f E H (Q) 

(6.4) llTfll ? C llfIlt-2, 

where we have used the estimate (4.4) with s = t - 2. Combining (6.3) and (6.4), 
it follows that 

(6.5) II(T - Th)fI 1 < Ch' IIfIIt-2 

for 2 < t < r. 
Now we want to estimate norms of (T - Th)f with index lower than 1. To this 

end let ik EE C'(n) be arbitrary. We have that 

(6.6) ((T - Th)f, i/) = B((T - Th)f, T*tk) = B((T - Th)f, T* t, - X) 

for any x E Sh. Using (4.2) and (6.5) we obtain from (6.6), 

(6.7) I((T - Th)f, 01)I ? Cht'1 IIfIIt-2 IIT*11 - X1l1. 

Now since x is arbitrary we may take the infimum on the right-hand side of (6.7) 
and use (5. 1) with t = s + 2, 0 < s < r - 2 to obtain 

|((T- Th)f, it)I < Chs~t IIfIIt-2 IIT* 1/I s+2 

Using the estimate (4.6) we have that 

I((T - Th)f, iI)I _ Chs+t IlfIIt-2 11IkIls 

for 0 < s < r - 2 and 2 < t < r. Since ik is arbitrary in C'(n) it follows that 

II(T - Th)fIIS = sup I((T - Th)f, i)/II1|II < Ch'+t IIfIIt-2. 

Now dividing by 1f t-2 and taking the supremum over functions f E Ht 2(Q) 

we obtain 

(6.8) I I(T - Th)OI -S,t-2 -< Chs+t 

for 0 < s < r - 2 and 2 < t ? r. 
If we take s = 0 and t = 2 in (6.8) we obtain easily that (3.2) is satisfied. Hence 

Theorems 1-4 apply with s0 =s, = r - 2. Thus let X be any eigenvalue with algebraic 
multiplicity m satisfying (4.5) and , = 1/X. Then the eigenvalues ,uj(h), . , p M(h) 
which converge to , as h -> 0 are computed as the reciprocals of certain eigenvalues 
x .(h), , xm(h) of the finite-dimensional eigenvalue problem 

B(w, p) = XA(h)(w, p) 

for nonzero w E Sh and all E E Sh. Theorem 2 thus yields the estimate 
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(6.9) X - (<- E 1/(h)) Ch22 

We point out that in the case of a simple eigenvalue (m = 1) we have 
that IX - X(h)j < Ch2r-2, and that this estimate yields the same rate of convergence 
obtainable in the case that the problem is selfadjoint using the methods of [11]. 

Using Theorem 1 with s = 0 we obtain for the invariant subspaces 

(6.10) max 11u, - w,110 < Chr. 
1 < j s m 

We note that in case the boundary or the coefficients do not possess the required 
smoothness properties we would obtain lower rates of convergence. In such a case 
this would indeed be expected. 

7. Least Squares Method. One method of approximating the solution of the 
Dirichlet problem using subspaces Sh which are not required to satisfy any boundary 
conditions is the least squares method of Bramble and Schatz [15], [16]. Although 
the case studied in [15] was that of real coefficients all relevant theorems from [15] 
are valid in the case of strongly elliptic operators with complex coefficients with the 
spaces taken to be complex. 

Now let {Sh}o<hl< be of class 82,r with r ? 4. Then the least squares approxima- 
tion to the solution of Dirichlet's problem is given as follows: For f EE 22(Q) define 
Uh to be the unique element of Sh such that 

IIL h - fIio + h-3 UhI = inf {llLX - fIl1 + h-3 IX12}. 
XC-Sh 

Here we have used the notation 

I1 A If k 12 du, 

with a the measure on a0 induced by the Lebesgue measure on RN-1. The corre- 
sponding inner product will henceforth be denoted by 

( )= f i du. 

Because of uniqueness in the Dirichlet problem, (4.3) with V = H U(Q) Uh C Sh 
exists and is unique and we denote the corresponding linear solution operator by 
Th. Hence we have that Tjf = Uh and Th: ?2(Q) -> Sh C ?22(Q) and is compact. 

Clearly, an equivalent characterization of Uh is given by 

(Luh, Lo) + hV3(Ul, 0) = (f, Lo) 

for all p E Sh. Now it is easy to see that y(h) is a nonzero eigenvalue of Th and 
w E Sh is a corresponding eigenfunction if and only if 

(7.1) (Lw, Lo) + h-3(W, 0) = (w, L)4y(h) 

for all p E Sh. Hence, again, we may compare the eigenvalues X(h) = l/y(h) of the 
system (7.1) with those of (4.5) by comparing the eigenvalues of T with those of Th. 

Note that even in the case that L is selfadjoint, (7.1) gives rise to a nonsymmetric 
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matrix eigenvalue problem so that the convergence estimates for the eigenvalues 
do not follow from the standard techniques using the Rayleigh quotient. In par- 
ticular, the technique of [11] does not apply. 

In order to see that Theorems 1-4 apply, we need only give estimates for T - Th 
in various norms. But these follow directly from Corollary 4.1 of [15]. In Corollary 
4.1, take oy = 2, X = t - 2, g-- 0 and I = -s. We have e = (T - Th)f 
and JJ(T - Th)f I I Ch8 t 1fil-t2 for 0 < s < r - 4 and 2 < t < r. This means 
that I(T- Th)l I,, 2 < Ch8"tforO s_ r-4and2?< t r.Takings=O 
and t = 2 we see immediately that (3.2) is satisfied. Now let X be an eigenvalue of 
(4.5) with algebraic multiplicity m. Then the m eigenvalues XA(h), , Xm(h) which 
converge to X satisfy 

x - (- E 1iX(h)) _ Ch 

This is just the result of Theorem 2 with s = r - 4 and s, r - 2. 
The estimate (6.10) given by Theorem 1 is the same in this case. 

8. Nitsche's Method for the Dirichlet Problem. Although the least squares 
method requires nothing special about the elements of Sh at the boundary of Q, it 
does involve second derivatives in the quadratic form and hence might lead to prob- 
lems of conditioning of the resulting linear system. 

Nitsche has proposed a method in [28] for approximating the solution of the 
Dirichlet problem for Poisson's equation. This method involves a quadratic form 
which is not bounded below on the whole space but which is positive definite on 
subspaces Sh which satisfy certain additional conditions. Because of this indefiniteness 
property the standard techniques for dealing with selfadjoint problems do not lead 
to a convergence proof or estimates for the rate of convergence of the corresponding 
eigenvalues. 

Here we shall formulate Nitsche's method for the general nonselfadjoint equation 
with complex coefficients and prove the estimates necessary for the application of 
our theorems to the study of eigenvalues. 

Let { Sh } 0 <h 1 be of class 82, r and, in addition, we assume that there is a constant 
C1 such that 

(8.1) A=l in 
p 

2xda <Ch1I111 

for all o C S, and 0 < h < 1. 
Define now the quadratic form 

Nf, ) = B(f, st) - - - bin';) - (V, I' ) + -yh1(p, A), 

where y is a positive constant, a =p a, in1a/Oxj (as in Section 4) and 
O E~ I, i = 12 n1a/ Ox j. 

Let us define, for each h, the norm 

(N [ 2x + h aao 
2 

+ h-1 IW 12) 
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for so ( H2( Q) with /pdxj on dQ its trace. It is a simple consequence of (4.1) and 
Schwarz's inequality that there are constants C and -yo such that for -y > -, 

(8.2) 11101112 < C N-(J, ) 
for all p E Sh. In this estimate explicit use is made of (8.1). 

It is equally clear that Ny is a sesquilinear form which is continuous with respect 
to 111 1H; i.e., there is a constant C such that 

(8.3) JN(J~, t)l < C |j|1pjjj 111A111 

for all f and;b in H2(Q4 Now for a given f E 22(Q) let uh = Thf be the unique solution 
of the equations 

(8.4) Ny(Uh, f) = (f, a) 
for all o C Sh. The existence and uniqueness is assured by (8.2). Thus we have 
defined a family { Th} O<hi1 of compact operators on 22(Q). As in the previous sections 
the corresponding eigenvalues X(h) satisfy 

(8 .5) NY (w W. p) = X(h)(w W. ) 
for some nonzero w in Sh and all p E Sh. Clearly A(h) is a nonzero eigenvalue of Th 

if and only if X(h) = ljy(h) is an eigenvalue of (8.5). 
To apply our theorems to the comparison of the eigenvalues of (4.5) with those 

of (8.5) it again suffices to estimate certain norms of T - Th with T defined through 
(4.3) with V = H(Q). 

To this end we note first that 

(8.6) Ny(Tf, a) = (f, a) 

for all o E H2(Q). Hence, combining (8.4) and (8.6), we obtain 

(8.7) Ny((T- Th)f, 0) = 0 

for all f E Sh. We first obtain an estimate for I I l(T - Th)f III. By the triangle inequality 
we have that, for any x E Sh, 

(8.8) III(T - Th)fjjj _ ?|ITf - xii + ? lix - 
Thfjij- 

Since x - Thf E Sh, we may use (8.2) to obtain 

(8.9) lix - Thf iii ? C IN-x - Thf, x - Thf)i 

= C IN (X - Tf,x - Thf)i, 

the last equation coming from (8.7). Using (8.9) and (8.3) it follows that 

(8.10) Ilix - Thfiii ? C ilX - TfIl. 

The last inequality, (8.10), together with (8.8) yields 

(8.11) III(T - Th)fiii < C inf liX - TfIii. 
XCSh 

Now by standard trace inequalities it follows that for any v E H2(Q), 

2 

(8.12) 111vlL < C E hi-l 11vlul 
2 =0 
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for 0 < h < 1. Combining (8.11) and (8.12) and using the property (5.1) of Sh we 
obtain 

IHI(T - Th)f III < Ch1-' 11Tf1lt 

for 2 < t < r. It follows then from (4.4) that, if f C Ht-2(Q) then 

(8.13) I (T - T,)fIII ' Cht I IfIIt-2. 

To estimate the norms IIT- T,,II? t -2 for 0 < s < r - 2 and 2 < t < r we 
proceed as in Section 6. Let E' C C-(C2) be arbitrary and note that N(, T* ) = 

(a, ) for all 0 C H2(Q). In particular, 

((T - Te)f, 4') = N7 ((T - Th)f, T* 4) 

= N7 ((T - Th)f, T*4 - X) 

for all x E Sh. From (8.3) it follows that 

#T- Th)f, 41)1 < C HII(T - Th)fI III HIT*q - XIH. 

Using (8.13), (8.12) and the approximability assumptions (5.1) it follows that 

((T - Th)f, 41)1 ? Ch8+t JIfIt-2 IIT*4VH8+2 

The estimate (4.7) yields 

I((T - T,)f, 41)1 < Ch8+t I If I It-2 1141118, 

for 0 < s < r - 2 and 2 < t < r. This inequality implies immediately that 

IT - T,1JJ8,t-2 ? Ch3+t 

for 0 < s < r - 2 and 2 < t < r. In particular, with s = 0, t = 2, we have 

lim lIT - Th Io o = 0 
ho0 

so that Theorems 1-4 apply. The results (6.9) and (6.10) are valid now in this case. 

9. Nitsche's Method with Nearly Zero Boundary Conditions. If the subspaces 
S,, satisfy, in addition to condition (8.1), a certain condition of smallness on the 
boundary then Nitsche [29] has observed that the form No also leads to good ap- 
proximation in the Dirichlet problem. 

More precisely, suppose that there is a constant C2 such that for all 0 E Sh, 

(9.1) =f - C2h 1 . 

Suppose further that C2 < (a0/8)(8Nj2C1/ao + b)-' where Cl is the constant in 
(8.1) and a and b are constants such that 

max E a,2n, < dl and max E b,n, < b. 
I ? i .<?A';xCaQ = 1 X CQ I = 1 

This condition just says that (9.1) must hold with C2 a sufficiently small constant. 
In fact, in many examples where a condition such as (9.1) is satisfied, it is also satisfied 
with C2 = C2(h) and C2(h) = o(l) as h -* 0. In this connection see [29], [18], [55]. 
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Now with this condition satisfied (8.2) is valid with y = 0 and all subsequent 
considerations of Section 8 are valid in this case. Hence Theorems 1-4 again apply 
and the estimates (6.9) and (6.10) are valid in this case. 

10. Lagrange Multiplier Method of Babuska. Recently Babuska [6] has in- 
troduced a method for constructing an approximate solution of the Dirichlet problem 
in a subspace Sh which belongs to a family of class 81,r He introduces analogous 
classes of spaces of approximating functions on aQ and simultaneously obtains 
an approximation of au/Oz, the conormal derivative of the solution on AQ. As in 
the other examples this method gives rise to a family of operators which fits nicely 
into our theory for the approximation of eigenvalues. Hence, as we shall see, estimates 
similar to (6.9) and (6.10) are valid. 

In order to describe precisely the method, we need some additional notation. 
For s any real number let H8(OQ) denote the Sobolev space of (complex valued) 
functions on aQ (cf. [26]) and denote by I ., the corresponding norm. 

In analogy with Section 5, let {Sh o<h?, be a one-parameter family of vector 
spaces. For given real numbers k' and r' with 1 < k' < r' we shall say that { Sh } O<h$1 

is of class 8)kS r' if SI C Hfk(aQ) for each h and if there is a constant C independent 
of h such that for any v E H8(OQ) and _ / < k' ? s r', 

(10.1) inf Iv - xli _ ChS t lvI, 
XCSh' 

and 

(10.2) If 11/2 ?< Ch'1 1o/2 

holds for all p E Sh. 
An example of a situation in which such a family may be easily constructed is 

as follows: Let Q C R2 and aQ be a simple closed (smooth) curve. By parametrizing 
aQ we may easily construct a family of periodic complex valued spline functions 
corresponding to a family of uniform subdivisions of aQ of length h. If we take 
Sh C Hl(aQ) for each h then the condition (10.2) follows easily from the property 

< Ch- 1 
1(p which is easy to verify in view of the uniformity of the subdivisions. 

In addition, it is not difficult to see that the validity of (10.1) with 0 < / < k' implies 
(10.1) for -2 < I ? k'. 

Now let H = H'(Q) X H- 1"2(aQ) and let U = iu'l} E H. (Here u E H'(Q) and 
U'C H- Q) are, of course, independent and 1lUll1 = (ll/ull ? lu l/2)"/.) On 
H X H consider the sesquilinear form 

6(? U, W) = B(u, w) - (u, w') - (u', w), 

where B is the form introduced in Section 4. Now let { )hI h}()<h?I be a family of sub- 
spaces of H with 011 h = Seh X SI, 5 a fixed small constant, IS, }<,?I of class S,. 
and {SI}O<,sl of class 81/2r3/2 with r > 2. Babuska [6] has proved the following 
inequality: 

(10.3) sup 1(3(U, 1)I >? C lIUl1I, 
I)C h; I I I I 11 -< I 

for all U E M,,, for a suitable positive constant C independent of h and U provided 
that 6 is sufficiently small. It is by means of this inequality that we may study a family 
of approximate solutions to (4.3) with V = H'(Q) (the Dirichlet problem). 
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We first note that if f C 22(Q) and it is the solution of (4.3), then for 
U= {u, aujl a} and c1 = L, pn'} arbitrary 

(10.4) 63( U, d) = B(u, D) - (Ku lu, SD) = (f, I) 

By virtue of (10.3) there exists a unique U,, C IWth satisfying 

(10.5) B(U,,, l) = (1,0) 

for all c1 E OR,,. Now for U,, = {u,,, us } define Tjf = u,,. Then, Th: 2,(Q) -*4>2(,2) 
and, since Slh is finite dimensional, TI, is compact. As in Section 6 let g(h) be a non- 
zero eigenvalue of Th; i.e., 

(10.6) T, w = g(h)w 

for some nonzero w E S,,. Then with X(h) = 1jg(h) and W = { w, w'} for a certain 
w' C S,l, we have 

(10.7) ~( W, X) = X(h)(w, SD) 

for all c1 E Olh. Hence, if we choose bases for Slh and S,t, then (10.7) reduces to a 
matrix eigenvalue problem with X(h) an eigenvalue. Conversely for X(h) satisfying 
(10.7) with w a nonzero element of 0Th it follows easily that (10.6) holds with g(h) = 
l/X(h). Hence the nonzero eigenvalues g(h) of (10.6) may be determined from a 
finite-dimensional (matrix) eigenvalue problem. 

Now to compare the eigenvalues of T with those of T, we shall estimate the 
appropriate norms of T - T,,. Babuska [6] has already obtained some of the necessary 
estimates. Set E = { e, e'} where e = U - 1h and e' = OulOu - ul. He has shown that 
(10.8) IIEI hr < Ch' ' If1I1t-2 

and 

(10.9) hlello ? Cht IIfIIt-2, 

for 2 < t < i. 
The method used for obtaining (10.9) also leads to the remaining desired estimates 

which, for completeness, we derive here. 
Let i, E C-(Q) and set V = {T*,, aT* i4,j}. We have that (e, 6b = GM(E, V) 

and, using (10.4) and (10.5), (e, /) = G(E, V - d1) for all P C OIZ,,. Now by the 
trace inequality (cf. [26]), IvI 12 < C jjvjj, for v E H'(Q), it follows immediately 
that 63 is continuous on H X H and hence, since P is arbitrary, 

[(e, t)1 < C h|Ell1 inf 11 V - PIIH. 
'I) C )1Z h 

It is an immediate consequence of the properties of 94)X (5.1) and (10.1), that for 
0 < s < - 2, 

h(e, t)I < ChS+'(IIT*4|1,s+2 + IaT*41a/dIs+112) IIE II-. 

The trace inequality 

IOT*/daI~,+i ? C II T*4t IIs+2 
with s ? 0 is also well known (cf. [26]) so that 
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I(e, t)1 _ Chs+l | T*411 1s+2 I E IH. 

We have then from (4.6) and (10.8) that 

I (e, 4)1 -< Ch'+ 3 
11kl6l. l lf it-2. 

Clearly, since e = (T - Th)f, we have that 

JIT - ThIIS9,t-2 < Cht+' 

for 0 < s ? r -2 and 2 < t ? r. Hence, in particular, setting s 0 and t = 2, 
we see that 

lim IT - ThI10,0 = ? 
ho0 

so that Theorems 1-4 apply. Again the estimates (6.9) and (6.10) are valid. 

11. 22-Projections. In each of the foregoing examples the approximate op- 
erators Th were chosen to be of the form PhT where Ph is some projection onto Sh. 

The crucial point in all these Rayleigh-Ritz-Galerkin methods is that although the 
operator T is usually not explicitly known, the operator Ph is chosen in such a way 
that PhT can be explicitly evaluated. In case T is an operator which can be evaluated, 
for example, if T were given as an integral operator whose kernel is a known Green's 
function, then a possible choice of the operator Ph is just the orthogonal projection 
in ?22(2) onto Sh. 

As a final example we suppose that T is an operator of the general type described 
in Section 3 and we take Th = PhT|c 5 (Q), where Ph is the orthogonal projection in 
?2(2) onto St with {Sho0<h?1 of class 8Or. Assume that r > e where e is as in Section 3. 

To obtain estimates for T - Th let f E H'-E(Q) and i/ E C@(Q). Then 

I((T - Th)f, t)I = ((I - Ph)Tf, (I - Ph)0) 

< inf lITf - x111o inf 111' - X2110. 
XGSh X2 CSh 

It follows from (5.1) and (3.1) that 

I((T- Th)f, t)1 -< Chs+t II|tgII| IlfIlt-E 

for 0 < s, t < r. Hence 

JIT - ThII-st-f < Ch +t 

for 0 < s, t < r and in particular choosing s 0 and t = e it follows that 

lim IT - ThI10,0 = ?- 
h-O 

Thus Theorems 1-4 apply. Let 4 be an eigenvalue of T with algebraic multiplicity 
m and ,2(h) = (1r/m) , 1 ,j(h), where the 4 ,(h)'s are the m eigenvalues of Th which 
converge to u as h - 0. Then from Theorem 2 we find that, for 0 < h _ h2, 

- A(h) I < Ch2r. 

As before, for { u 1}7 and { w} =' the respective orthonormal bases for the cor- 
responding invariant subspaces, we have from Theorem 1 that 
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max I ui - wIlo ?< Ch'. 
1?< i : m 
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